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Global stability analysis in delayed cellular neural networks
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In this paper, the author analyzes further problems of global stability for a class of cellular neural networks
with delays by means of the Lyapunov functional method, inequaldi®sb?=2ab and a+b3+c8
=3abc (a,b,c=0) analysis technique, some stability criteria are obtained under more general conditions.
These criteria can be applied to design globally stable networks and thus have important significance in both
theory and application$S1063-651X99)04605-X

PACS numbg(s): 87.10:+e, 85.40.Ls, 05.45:a, 43.80+p

I. INTRODUCTION in which n corresponds to the number of units in a neural
network;x;(t) corresponds to the state vector of iltle unit

Cellular neural network§CNN'’s) were introduced by attimet; f;(x;(t)) denotes the output of thigh unit at time
Chua and Yand1,2] in 1988. They found important appli- t; a;,bjj,l;,c; are constanta;; denotes the strength of the
cations in signal processing, especially in image treatment. Ith unit on theith unit at timet, b;; denotes the strength of
is well known that the CNN is formed by many units called the jth unit on theith unit at timet—7;, |; denotes the
cells, and the structure of the CNN is similar to that found inexternal bias on théth unit, 7; corresponds to the transmis-
cellular automata, namely, any cell in a cellular neural netsion delay along the axon of théh unit and is not a negative
work is connected only to its neighbor cells. A cell containsconstant,c; represents the rate with which thth unit will
linear and nonlinear circuit elements, which typically are lin-reset its potential to the resting state in isolation when dis-
ear capacitors, linear resistors, linear and nonlinear coreonnected from the network and external inputs. In the fol-
trolled sources, and independent sources. For the circuit didewing, we assume that each of the relations between the
gram and implementing the connection pattern for the CNNoutput of the cellf; (i=1,2,...n) and the state of the cell
the reader is referred thl]. The CNN can be applied in possess the following properties:
signal processing, moreover it can be used to solve some (H,) f;, (i=1,2,...n) is bounded orR;
image processing and pattern recognition problems, but itis (H,) There is a numbeg;>0 such that f;(u) — f;(v)]
necessary to solve some moving image processing and pak u,;|u—v| for anyu,v e R.
tern recognition by using cellular neural networks with delay |t is easy to find from H,) thatf; is a continuous func-
(DCNN). The DCNN can only be described by delayed dif- tion onR. In particular, if the relation between the output of
ferential equations(namely, functional differential equa- the cell and the state of the cell is described by a piecewise-
tions), in fact, the CNN is described by ordinary differential |inear functionf;(x) = %(|x+ 1|—|x—1]), then it is easy to
equations. The studies of stability of the DCNN and CNNsee that the functiofi, clearly satisfies the hypotheseid 4
are of theoretical and applicable significance in the design ong H,) above, andu;=1 (i=1,2,...n). The circuit
networks. There exist some results of stability for CNN andimplementing of Eqs(1) can be referred to Ref§1,3].
DCNN, and we refer to[1-7] and the references cited
therein. The purpose of this paper is to derive some more
general sufficient conditions for the global asymptotic stabil-
ity of the DCNN, which are independent of delays, by using IIl. STABILITY ANALYSIS ON THE DCNN

the Lyapunov functional metho@—9], inequalitiesa®+b? Lemma 1 Assume that the output of the cell function
=2ab and a®+b®*+c3=3abc (a,b,c=0) analysis tech- f. (i=1.2,...n) satisfies the hypothesesi() and H,)
nique. Thus, some results related in refereri¢es’], and the  5phove. Then there exists an equilibrium for the DCKIN
references cited therein, are extended and improved. These p,of |f x* =(x} x5, ... x*)T denotes an equilibrium
are of theoretical and applicable significance in signal Progs the DCNN1), then x* satisq‘ies the nonlinear algebraic
cessing, especially in moving image treatment and the desiggystem '
of networks.

In the following, we consider the DCNN model described

by differential equations with delays

n xF(O=c; Y X ayfi(xF)+ 2 byf(x)+1;
Xil(t):_CiXi(t)‘FEl aj; fi(x;(t)) =1 =1
=

i — : -1 * -1

+21 bjj (xj(t=7))+1;, _J'gl[ci (@ + b IO ) +¢ 7 2)
J:

Ci>0, i=1,2,...n, (1) Let B:[C;l(aij+bij)]nxn- IZ(Cilll’CElIZ’ L

1063-651X/99/565)/594(05)/$15.00 PRE 59 5940 ©1999 The American Physical Society



PRE 59 GLOBAL STABILITY ANALYSIS IN DELAYED ... 5941

c )T, FOX)=[f(xF), fo(x3), ... fa(x¥)]". Then the Using Eq.(4) above, one can easily prove that solutions
system(2) can be written in vector-matrix notation in the of the DCNN (1) remain bounded ofi0,+«). This com-
form pletes the proof.

Theorem 1For the DCNN(1), suppose that the outputs of
the cellf; (i=1,2,...n) satisfy the hypothesed(;) and
(H,) above. Assume, furthermore, that the system param-
X*=F(x*)=Bf(x*)+1, (3) etersa;,b; (i,j=1,2,...n) satisfy the conditions

thusx* is a fixed point of the map:R"—R". The existence n . .

of a fixed point of the mag- can be shown by the well- E (|aij|,uj2“i +|aji|,ui2Bi +|bij|Mj2“i+|bji|Mi2Bi)<20i,
known Brouwer's fixed-point theorem. In fact, tidlh com- =1

ponent ofF(x) satisfies the following form:

in which aj* ,,8]-* a;,B; (J=1,2,...n) are any real num-
" . . bers witha} +8F =1, aj+B;=1, andy; (j=1,2,...n)
|(F(x))i|= 21 [ci “(ay;+bij) If;(x) +¢; 7l being the constant numbers of the hypothesés) (above.
= Then the equilibriumx* of the DCNN (1) is globally
asymptotically stable independent of delays.
Proof. If x* =(x} ,x5, ... x5)" is an equilibrium of the
DCNN (1), one can derive from Ed1) that the deviations
yi(t)=x;(t)—x (i=1,2,...n) satisfy

n
sjzl | H(ay; +bip I f(x)+ 1|

n
=2 loi @y +by) M+l

yi/(t): _Ciyi(t)+;1 a”[fJ(Xr +yj(t))_fJ(Xr)]

where x=(X1,Xz, ... X)), M=max—j<,sup|fi(s)|]. Let
K:ma)&sisn@?:ﬂcfl(aij+bij)|M+Cfl||i|)y then F(R")CQ " . .
={(X1, Xz, . .. Xp) eR"|x|<K, i=1,2,...n}. Itis easy +j§=:1 by [ ;5 +y(t=7)) = (X)) ]; 5

to see that the map is continuous. Let the map be re-
stricted onQ, namerF|Q:Q—>Q. ObvioustF|Q maps the
bounded closed and convex €¢bn R" into itself; hence by
the well-known Brouwer’s theorem, the mé&phas at least ] - o
one fixed point say* = (x* ,x%, ... x*)7. This completes obviously, (0,0...,0)' is an eq_qlllbrlum of Eq.(5). To
the proof. prove the global asymptotic stability &f of the DCNN(1),
Remark 1 We note that Brouwer's theorem does not it is sufficient to prove the global asymptotic stability of the
guarantee the uniqueness of the fixed point. However, in thi§ivial solution of Eq.(5). The local existence of solutions of
paper, we derive some sufficient criteria on the systgjn  E£0s-(1) and(5) follows by the method of steps, the existence
which will guarantee not only the uniqueness of the equilib-Of [0.+) will be a consequence of our analysis below.
rium but also its recall by its global asymptotic stability. The Now we consider the Lyapunov functional defined by
uniqueness of the equilibrium will follow from the global
asymptotic stability to be established below.
Lemma 2 For the DCNN(1), suppose that the output of
the cellf; (i=1,2,...n) satisfies the hypothesebl{) and V(t)=V(y)(1)
(H,) above. Then all solutions of the DCNKL) remain
bounded for 0,+ ). n g 10 s [t
Proof. It is easy to observe that all solutions of the DCNN = V3t + = g Jf 2 )
(1) satisfy differential inequalities of the form izl 2¥i*3 J‘Zl 1Byl ijj (sids

(6)
—CiXi(D)— =X ()< —cix(t)+ 5, 4
whereg; (j=1,2,...n) are any real numbers.

Calculating the derivative o along the solution of Eq.
where 6= ={'_ 1 (|ayj| + [bj; ) sup.crl ()| +[1il- (5), we get
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=2, Vi =cyi()+ 2 ay[ 0 +y; ()= )]+ 2 by f0¢ +y;(t=7) = ()]
i=1 j=1 j=1
1 26,
+3 2 bl Iy~ vt )]
ﬁgl {_CiYiz(t)"‘jzl ENIRAGINAGI
+2 |b|1|MJ|Y|(t)||y](t 7'1)|+ 2 |b|1|M B][yj(t) y](t_TI)]
=§J—cy.<t)+2 1Ty D ] |y,<t>|>+2 101 ey (DD Gy (= 7))
1o 281
+5 2 byl PO —yft- 7)1, @
a] ,ﬁj ;B (j= . n) are any real numbers W|m*+,8] =1, a;+B;=1. Now estimating the right side of E¢{)

by using the mequahty gb=<a?+ b2, we have

dV

dt

HM:

{_C|y|(t)+2 |alj [(M |Y|(t)|)2‘|'(,UvﬂJ |yj(t)|)2

+2 |bIJ| [(MJJ|Y|(t)|)2+(,U« J|y|(t_7'1)|)2]+ 2 |b|J|Iu‘B[yJ(t) yJ(t 7])]}

n

g—r; yA(t),

1 28"

where r=min<j< [ —(Ci— EEn 1(|a|]|MJ +|a]||M
+[bj 1+ [y 1 *))] > 0.

A consequence of Ed8) is that

vy o+r [ S yaedssviy)©0).  (©
0i=1

It follows from Eg. (9) that

(10

n
+
f > yA(t)dt< +oo,
0 i=1

According to Lemma 2x;(t) is bounded on (G x).
This implies boundedness gf(t),y/ (t) on (0,+x); hence
yi(t) ,yiz(t) are uniformly continuous on (8,»). By Barbal-
at's Lemma[10], it follows that

1 2aF 2BF 2
_Ci+§j21 (|aij|Mj b+ [y u; A +|bu|M Y+ by ﬁ')

o(t)

®

lim E y2(t)=0. (11)

t—+ow I=

It follows from Eq.(11) that the zero solution of Eg5) is
globally asymptotically stable for any delays, thus the equi-
librium of the DCNN (1) is also globally asymptotically
stable. This completes the proof.

Theorem 2For the DCNN(1), suppose that the output of
the cellf; (i=1,2,...n) satisfies the hypothesekl{) and
(H,) above. Assume furthermore that the system parameters
a;j,b; (i,j=1,2,...n) satisfy the following conditions:

n

3a 38; 3y,
21 K(ET aJ+|aij|Mjﬁ]+|aji|Mi ")

3q 38, 3y,
+([byj | ]+ oy Pit byl ) ]<3c;,

in which u; (j=1,2,...n) are the constant numbers of the
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hypothesesHi,) above, andy;,B;,y; are any real numbers with;+ 8;+y;=1 (j= .. n).
Then the equilibriumx* of the DCNN (1) is also globally asymptot|cally stable mdependent of delays

Proof. Consider the Lyapunov functional defined by

n 1 1 n [t
VO=Vi(0=2, | 3I0P+ 3 3 byl | |yj<s>|3ds), (12
1= = _Tj

wherey; (j=1,2,...n) are any real number.
Calculating the upper right derivativ@ "V of V along the solution of Eq(5), we get

n

1 :
+3 2 bl YO lyi(t= )]

521 {|Yi(t)|2( —Ci|Yi(t)|+]Zl |aij|Mj|yJ'(t)|+JZl [bij | mily;(t— 7))

=

=2 [—Ci|yi(t)|3+z¢l |aij|Mj|yi(t)|2|yj(t)|+J_Zl i | i lyi (O [Ply;(t= 7]
19 3y 3 3
+3 2, bl Ty (OF =Lyt 7))

=2 {—cilymt)l%; i Gy (O Dy (0 D)y (D))

. _ _ _ 12 _
+]2=:l |bij|(/J'jaj|yi(t)|)(Mjﬁj|yi(t)|)(/~"jyj|yj(t_Tj)|)+§ 121 |bij|ﬂ,-37'[|yj(t)|3_|yj(t—7'j)|3] : (13

wherea;,B;,y; are any real numbers with;+ g+ y;=1 (j=1,2,...n). Now estimating the right side of E¢13) by

using of the mequallty 8bc=<a’+b3+cd (a b c>0) we have

. 1
_C|yi(t)|3+2 |a|] [(Mjl|y|(t)|)3+(ﬂ |y|(t)|)3+(/~L |yj(t)|)3]+2 |b|]| [(ij|y|(t)|)3+(l/~ |y|(t)|)3

<>
i=1

_ 1o _
+ (Y (t=mD*+3 JEl i 2 Ll (D= ly; (= )]

. 1 o . , 1w
cilyi(t)[3+ 2 laulg[mfllyi<t>|>3+(ufllyi<t>|)3+(uflly,-<t>|)3]+j§1 [y | 3Ly DD+ (e lyi(])?

Il
M i}

1

1 n
*3 Z b|j|/“?yj|yj(t)|3}

=2, —c-|yi<t>|3+1_2 |a.J|<MJ ‘+M,ﬁj)|y|(t)|3+z —|a,.|u?”|y.<t>|3+2 |b.,|w, EROIVIG]

=1

+j2 |b1||M yI|Y|(t)|3}

1g 3] 35, 3y, 3q 3 3
—( =5 2 [l e+ a4 g ™)+ (g |+ by P4 (b 7™ i (D

-2
i=1
<12 (P, -
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where f1=minlsisn[—(ci—%2?:1((|aij|Mj3aj+|aij|MfBj 1, but not those of Theorem 2ij) asn=2, u;=1, ¢;=1
3y 3aq; 3B 3y (i=1,2), a;;=by;=0.25, a,,=by,=0.15, a;,=b;,=0.2,
+Hla: lw”DN+ (b w1 bl (b w” )] >0. A 11 11 22 22 12 12
co|néle|:MLljer)1ce(|of”||Elcgjl4) is| t'r’]L’LtLJ 1Bl 7)) a,;=b,;=0.3, DCNN satisfies the conditions of Theorem 2,
g but not those of Theorem 1, i.e., conditions of Theorem 1 are

¢ independent of conditions of Theorem 2, in the sense that for

V(y)(t)+r1f 2 lyi(s)|3ds<V(y)(0). (150  any one of them there exists a network which satisfies one
0i=1 but not the other.

It follows from Eq. (15) that

[ll. CONCLUSION
n
+ oo
f > (1) Pdt< +oo. (16) _In this paper, we have derived two main theorems which
0 i=1 did not assume the symmetry of the connection matrix

(@ij)nxn»(bij)nxn, and only assumed the output of the cell
(i.e., the nonlinear properties of the gedlith (H;) and H,)
above. Also, the theorens did not contain each other, and did
not require differentiable or strictly monotonously increas-
n ing; for this reason, the sufficient conditions established in
lim E lyi(D)]3=0. (17) the two Theorems above have a wider adaptive range, and
oo i=1 these conditions can be applied to design unconditional glo-
bally stable cellular neural networks with dela¢lBCNN),

It follows from Eq.(17) that the equilibrium of the DCNN  which possess highly important significance in some applied
(1) is also globally asymptotically stable. This completes thefields, for instance, the global optimization problem. In ad-
proof. dition, the results in this paper are easily verifiable and the

Remark 2 By comparing the two theorems, it is easily each of the outputs of the ced| (j=1.2,...n) are quite
found that Theorem 1 is equivalent to Theorem 2.8 general, and it has very wide adjustable leeway because our
=1, a;=a;, bjj=b; (i,j=1,2,...n). In addition, take sufficient criteria possess many adjustable real parameters,
n=2, fi(x)=3(]x+1/—|x—1|), ¢;=1 (i=1,2), clearly, which are of significance in the design of DCNN.
the functionf; satisfy the hypothesedi() and H,) above,

Applying the methods similar to Theorem 1, we can prove
that |y;(t)],]y;(t)|® are uniformly continuous on (&%),
then it can known from Eq16) that

andui=1 (i=1,2), at this time, We.give the following two ACKNOWLEDGMENT
examples and can easily check tfigtasn=2, u;=1, ¢;
=1 (i=1,2), a;;=by;=a,=b,,=0.25, a;»=b,=0.3, This work was supported in part by the Natural Science
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