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Global stability analysis in delayed cellular neural networks
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In this paper, the author analyzes further problems of global stability for a class of cellular neural networks
with delays by means of the Lyapunov functional method, inequalitiesa21b2>2ab and a31b31c3

>3abc (a,b,c>0) analysis technique, some stability criteria are obtained under more general conditions.
These criteria can be applied to design globally stable networks and thus have important significance in both
theory and applications.@S1063-651X~99!04605-X#

PACS number~s!: 87.10.1e, 85.40.Ls, 05.45.2a, 43.80.1p
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I. INTRODUCTION

Cellular neural networks~CNN’s! were introduced by
Chua and Yang@1,2# in 1988. They found important appli
cations in signal processing, especially in image treatmen
is well known that the CNN is formed by many units calle
cells, and the structure of the CNN is similar to that found
cellular automata, namely, any cell in a cellular neural n
work is connected only to its neighbor cells. A cell contai
linear and nonlinear circuit elements, which typically are l
ear capacitors, linear resistors, linear and nonlinear c
trolled sources, and independent sources. For the circuit
gram and implementing the connection pattern for the C
the reader is referred to@1#. The CNN can be applied in
signal processing, moreover it can be used to solve s
image processing and pattern recognition problems, but
necessary to solve some moving image processing and
tern recognition by using cellular neural networks with de
~DCNN!. The DCNN can only be described by delayed d
ferential equations~namely, functional differential equa
tions!, in fact, the CNN is described by ordinary differenti
equations. The studies of stability of the DCNN and CN
are of theoretical and applicable significance in the desig
networks. There exist some results of stability for CNN a
DCNN, and we refer to@1–7# and the references cite
therein. The purpose of this paper is to derive some m
general sufficient conditions for the global asymptotic sta
ity of the DCNN, which are independent of delays, by usi
the Lyapunov functional method@7–9#, inequalitiesa21b2

>2ab and a31b31c3>3abc (a,b,c>0) analysis tech-
nique. Thus, some results related in references@1–7#, and the
references cited therein, are extended and improved. T
are of theoretical and applicable significance in signal p
cessing, especially in moving image treatment and the de
of networks.

In the following, we consider the DCNN model describ
by differential equations with delays

xi8~ t !52cixi~ t !1(
j 51

n

ai j f j„xj~ t !…

1(
j 51

n

bi j f j„xj~ t2t j !…1I i ,

ci.0, i 51,2, . . . ,n, ~1!
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in which n corresponds to the number of units in a neu
network;xi(t) corresponds to the state vector of thei th unit
at time t; f j„xj (t)… denotes the output of thej th unit at time
t; ai j ,bi j ,I i ,ci are constant,ai j denotes the strength of th
j th unit on thei th unit at timet, bi j denotes the strength o
the j th unit on the i th unit at time t2t j , I i denotes the
external bias on thei th unit, t j corresponds to the transmis
sion delay along the axon of thej th unit and is not a negative
constant,ci represents the rate with which thei th unit will
reset its potential to the resting state in isolation when d
connected from the network and external inputs. In the f
lowing, we assume that each of the relations between
output of the cellf i ( i 51,2, . . . ,n) and the state of the cel
possess the following properties:

(H1) f i ( i 51,2, . . . ,n) is bounded onR;
(H2) There is a numberm i.0 such thatu f i(u)2 f i(v)u

<m i uu2vu for any u,vPR.
It is easy to find from (H2) that f i is a continuous func-

tion on R. In particular, if the relation between the output
the cell and the state of the cell is described by a piecew
linear function f i(x)5 1

2 (ux11u2ux21u), then it is easy to
see that the functionf i clearly satisfies the hypotheses (H1)
and (H2) above, andm i[1 (i 51,2, . . . ,n). The circuit
implementing of Eqs.~1! can be referred to Refs.@1,3#.

II. STABILITY ANALYSIS ON THE DCNN

Lemma 1. Assume that the output of the cell functio
f i ( i 51,2, . . . ,n) satisfies the hypotheses (H1) and (H2)
above. Then there exists an equilibrium for the DCNN~1!.

Proof. If x* 5(x1* ,x2* , . . . ,xn* )T denotes an equilibrium
of the DCNN~1!, then x* satisfies the nonlinear algebra
system

xi* ~ t !5ci
21F (

j 51

n

ai j f j~xj* !1(
j 51

n

bi j f j~xj* !1I i G
5(

j 51

n

@ci
21~ai j 1bi j !# f j~xj* !1ci

21I i . ~2!

Let B5@ci
21(ai j 1bi j )#n3n , I 5(c1

21I 1 ,c2
21I 2 , . . . ,
5940 ©1999 The American Physical Society



e

-

o
th

lib
e
l

f

N

ns

f

m-

e
f
ce
w.

PRE 59 5941GLOBAL STABILITY ANALYSIS IN DELAYED . . .
cn
21I n)T, f (x* )5@ f 1(x1* ), f 2(x2* ), . . . ,f n(xn* )#T. Then the

system~2! can be written in vector-matrix notation in th
form

x* 5F~x* !5B f~x* !1I , ~3!

thusx* is a fixed point of the mapF:Rn→Rn. The existence
of a fixed point of the mapF can be shown by the well
known Brouwer’s fixed-point theorem. In fact, thei th com-
ponent ofF(x) satisfies the following form:

u„F~x!…i u5U(
j 51

n

@ci
21~ai j 1bi j !# f j~xj !1ci

21I iU
<(

j 51

n

uci
21~ai j 1bi j !uu f j~xj !u1ci

21uI i u

<(
j 51

n

uci
21~ai j 1bi j !uM1ci

21uI i u,

where x5(x1 ,x2 , . . . ,xn), M5max1<i<n supsu f i(s)u. Let
K5max1<i<n((j51

n uci
21(aij1bij)uM1ci

21uIiu), then F(Rn),Q
5$(x1 ,x2 , . . . ,xn)PRnuuxi u<K, i 51,2, . . . ,n%. It is easy
to see that the mapF is continuous. Let the mapF be re-
stricted onQ, namelyFuQ :Q→Q. ObviouslyFuQ maps the
bounded closed and convex setQ on Rn into itself; hence by
the well-known Brouwer’s theorem, the mapF has at least
one fixed point sayx* 5(x1* ,x2* , . . . ,xn* )T. This completes
the proof.

Remark 1. We note that Brouwer’s theorem does n
guarantee the uniqueness of the fixed point. However, in
paper, we derive some sufficient criteria on the system~1!
which will guarantee not only the uniqueness of the equi
rium but also its recall by its global asymptotic stability. Th
uniqueness of the equilibrium will follow from the globa
asymptotic stability to be established below.

Lemma 2. For the DCNN~1!, suppose that the output o
the cell f i ( i 51,2, . . . ,n) satisfies the hypotheses (H1) and
(H2) above. Then all solutions of the DCNN~1! remain
bounded for@0,1`).

Proof. It is easy to observe that all solutions of the DCN
~1! satisfy differential inequalities of the form

2cixi~ t !2d i<xi8~ t !<2cixi~ t !1d i , ~4!

whered i5( j 51
n (uai j u1ubi j u)supsPRu f j (s)u1uI i u.
t
is

-

Using Eq.~4! above, one can easily prove that solutio
of the DCNN ~1! remain bounded on@0,1`). This com-
pletes the proof.

Theorem 1. For the DCNN~1!, suppose that the outputs o
the cell f i ( i 51,2, . . . ,n) satisfy the hypotheses (H1) and
(H2) above. Assume, furthermore, that the system para
etersai j ,bi j ( i , j 51,2, . . . ,n) satisfy the conditions

(
j 51

n

~ uai j um j

2a j* 1uaji um i

2b i* 1ubi j um j
2a j1ubji um i

2b i !,2ci ,

in which a j* ,b j* ,a j ,b j ( j 51,2, . . . ,n) are any real num-
bers witha j* 1b j* 51, a j1b j51, andm j ( j 51,2, . . . ,n)
being the constant numbers of the hypotheses (H2) above.

Then the equilibriumx* of the DCNN ~1! is globally
asymptotically stable independent of delays.

Proof. If x* 5(x1* ,x2* , . . . ,xn* )T is an equilibrium of the
DCNN ~1!, one can derive from Eq.~1! that the deviations
yi(t)5xi(t)2xi* ( i 51,2, . . . ,n) satisfy

yi8~ t !52ciyi~ t !1(
j 51

n

ai j @ f j„xj* 1yj~ t !…2 f j~xj* !#

1(
j 51

n

bi j @ f j„xj* 1yj~ t2t j !…2 f j~xj* !#; ~5!

obviously, (0,0, . . . ,0)T is an equilibrium of Eq.~5!. To
prove the global asymptotic stability ofx* of the DCNN~1!,
it is sufficient to prove the global asymptotic stability of th
trivial solution of Eq.~5!. The local existence of solutions o
Eqs.~1! and~5! follows by the method of steps, the existen
of @0,1`) will be a consequence of our analysis belo
Now we consider the Lyapunov functional defined by

V~ t !5V~y!~ t !

5(
i 51

n S 1

2
yi

2~ t !1
1

2 (
j 51

n

ubi j um j
2b jE

t2t j

t

y j
2~s!dsD ,

~6!

whereb j ( j 51,2, . . . ,n) are any real numbers.
Calculating the derivative ofV along the solution of Eq.

~5!, we get
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dV

dt
5(

i 51

n F yi~ t !2ciyi~ t !1(
j 51

n

ai j @ f j„xj* 1yj~ t !…2 f j~xj* !#1(
j 51

n

bi j @ f j„xj* 1yj~ t2t j !…2 f j~xj* !#

1
1

2 (
j 51

n

ubi j um j
2b j@yj

2~ t !2yj
2~ t2t j !#G

<(
i 51

n F2ciyi
2~ t !1(

j 51

n

uai j um j uyi~ t !uuyj~ t !u

1(
j 51

n

ubi j um j uyi~ t !uuyj~ t2t j !u1
1

2 (
j 51

n

ubi j um j
2b j@yj

2~ t !2yj
2~ t2t j !#G

5(
i 51

n F2ciyi
2~ t !1(

j 51

n

uai j u„m j

a j* uyi~ t !u…„m j

b j* uyj~ t !u…1(
j 51

n

ubi j u„m j
a j uyi~ t !u…„m j

b j uyj~ t2t j !u…

1
1

2 (
j 51

n

ubi j um j
2b j@yj

2~ t !2yj
2~ t2t j !#G . ~7!

a j* ,b j* ,a j ,b j ( j 51,2, . . . ,n) are any real numbers witha j* 1b j* 51, a j1b j51. Now estimating the right side of Eq.~7!
by using the inequality 2ab<a21b2, we have

dV

dt
<(

i 51

n F2ciyi
2~ t !1(

j 51

n

uai j u
1

2
@„m j

a j* uyi~ t !u…21„m
j

b j* uyj~ t !u…2#

1(
j 51

n

ubi j u
1

2
@„m j

a j uyi~ t !u…21„m j
b j uyj~ t2t j !u…2#1

1

2 (
j 51

n

ubi j um j
2b j@yj

2~ t !2yj
2~ t2t j !#G

5(
i 51

n F2ci1
1

2 (
j 51

n

~ uai j um j

2a j* 1uaji um i

2b i* 1ubi j um j
2a j1ubji um i

2b i !Gyi
2~ t !

<2r(
i 51

n

yi
2~ t !, ~8!
ui-

f

ters

e

where r 5min1<i<n@2„ci2
1
2 ( j 51

n (uai j um j

2a j* 1uaji um i

2b i*

1ubi j um j
2a j1ubji um i

2b i)…#.0.
A consequence of Eq.~8! is that

V~y!~ t !1r E
0

t

(
i 51

n

yi
2~s!ds<V~y!~0!. ~9!

It follows from Eq. ~9! that

E
0

1`

(
i 51

n

yi
2~ t !dt,1`. ~10!

According to Lemma 2,xi(t) is bounded on (0,1`).
This implies boundedness ofyi(t),yi8(t) on (0,1`); hence
yi(t),yi

2(t) are uniformly continuous on (0,1`). By Barbal-
at’s Lemma@10#, it follows that
lim
t→1`

(
i 51

n

yi
2~ t !50. ~11!

It follows from Eq.~11! that the zero solution of Eq.~5! is
globally asymptotically stable for any delays, thus the eq
librium of the DCNN ~1! is also globally asymptotically
stable. This completes the proof.

Theorem 2. For the DCNN~1!, suppose that the output o
the cell f i ( i 51,2, . . . ,n) satisfies the hypotheses (H1) and
(H2) above. Assume furthermore that the system parame
ai j ,bi j ( i , j 51,2, . . . ,n) satisfy the following conditions:

(
j 51

n

@~ uai j um j
3a j1uai j um j

3b j1uaji um i
3g i !

1~ ubi j um j
3a j1ubi j um j

3b j1ubji um i
3g i !#,3ci ,

in which m j ( j 51,2, . . . ,n) are the constant numbers of th
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hypotheses (H2) above, anda j ,b j ,g j are any real numbers witha j1b j1g j51 ( j 51,2, . . . ,n).
Then the equilibriumx* of the DCNN ~1! is also globally asymptotically stable independent of delays.
Proof. Consider the Lyapunov functional defined by

V~ t !5V~y!~ t !5(
i 51

n S 1

3
uyi~ t !u31

1

3 (
j 51

n

ubi j um j
3g jE

t2t j

t

uyj~s!u3dsD , ~12!

whereg j ( j 51,2, . . . ,n) are any real number.
Calculating the upper right derivativeD1V of V along the solution of Eq.~5!, we get

D1V<(
i 51

n F uyi~ t !u2S 2ci uyi~ t !u1(
j 51

n

uai j um j uyj~ t !u1(
j 51

n

ubi j um j uyj~ t2t j !u D 1
1

3 (
j 51

n

ubi j um j
3g j@ uyj~ t !u32uyj~ t2t j !u3#G

5(
i 51

n F2ci uyi~ t !u31(
j 51

n

uai j um j uyi~ t !u2uyj~ t !u1(
j 51

n

ubi j um j uyi~ t !u2uyj~ t2t j !u

1
1

3 (
j 51

n

ubi j um j
3g j@ uyj~ t !u32uyj~ t2t j !u3#G

5(
i 51

n F2ci uyi~ t !u31(
j 51

n

uai j u„m j
a j uyi~ t !u…„m j

b j uyi~ t !u…„m j
g j uyj~ t !u…

1(
j 51

n

ubi j u„m j
a j uyi~ t !u…„m j

b j uyi~ t !u…„m j
g j uyj~ t2t j !u…1

1

3 (
j 51

n

ubi j um j
3g j@ uyj~ t !u32uyj~ t2t j !u3#G , ~13!

wherea j ,b j ,g j are any real numbers witha j1b j1g j51 ( j 51,2, . . . ,n). Now estimating the right side of Eq.~13! by
using of the inequality 3abc<a31b31c3 (a,b,c>0), we have

D1V<(
i 51

n F2ci uyi~ t !u31(
j 51

n

uai j u
1

3
@„m j

a j uyi~ t !u…31„m j
b j uyi~ t !u…31„m j

g j uyj~ t !u…3#1(
j 51

n

ubi j u
1

3
@„m j

a j uyi~ t !u…31„m j
b j uyi~ t !u…3

1„m j
g j uyj~ t2t j !u…3#1

1

3 (
j 51

n

ubi j um j
3g j@ uyj~ t !u32uyj~ t2t j !u3#G

5(
i 51

n F2ci uyi~ t !u31(
j 51

n

uai j u
1

3
@„m j

a j uyi~ t !u…31„m j
b j uyi~ t !u…31„m j

g j uyj~ t !u…3#1(
j 51

n

ubi j u
1

3
@„m j

a j uyi~ t !u…31„m j
b j uyi~ t !u…3#

1
1

3 (
j 51

n

ubi j um j
3g j uyj~ t !u3G

5(
i 51

n F2ci uyi~ t !u31(
j 51

n
1

3
uai j u~m j

3a j1m j
3b j !uyi~ t !u31(

j 51

n
1

3
uaji um i

3g iuyi~ t !u31(
j 51

n
1

3
ubi j u~m j

3a j1m j
3b j !uyi~ t !u3

1(
j 51

n
1

3
ubji um i

3g iuyi~ t !u3G
5(

i 51

n F2S ci2
1

3 (
j 51

n

@~ uai j um j
3a j1uai j um j

3b j1uaji um i
3g i !1~ ubi j um j

3a j1ubi j um j
3b j1ubji um i

3g i !#G uyi~ t !u3

<2r 1(
i 51

n

uyi~ t !u3, ~14!
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where r 15min1<i<n@2(ci2
1
3(j51

n
„(uai j um j

3a j1uai j um j
3b j

1uaji um i
3g i)1(ubi j um j

3a j1ubi j um j
3b j1ubji um i

3g i)…#.0. A
consequence of Eq.~14! is that

V~y!~ t !1r 1E
0

t

(
i 51

n

uyi~s!u3ds<V~y!~0!. ~15!

It follows from Eq. ~15! that

E
0

1`

(
i 51

n

uyi~ t !u3dt,1`. ~16!

Applying the methods similar to Theorem 1, we can pro
that uyi(t)u,uyi(t)u3 are uniformly continuous on (0,1`),
then it can known from Eq.~16! that

lim
t→1`

(
i 51

n

uyi~ t !u350. ~17!

It follows from Eq.~17! that the equilibrium of the DCNN
~1! is also globally asymptotically stable. This completes
proof.

Remark 2. By comparing the two theorems, it is easi
found that Theorem 1 is equivalent to Theorem 2 asm j
[1, ai j 5aji , bi j 5bji ( i , j 51,2, . . . ,n). In addition, take
n52, f i(x)5 1

2 (ux11u2ux21u), ci51 (i 51,2), clearly,
the functionf i satisfy the hypotheses (H1) and (H2) above,
andm i[1 (i 51,2), at this time, we give the following two
examples and can easily check that~i! as n52, m i[1, ci
51 (i 51,2), a115b115a225b2250.25, a125b1250.3,
a215b2150.15, DCNN satisfies the conditions of Theore
t.
e

e

1, but not those of Theorem 2;~ii ! as n52, m i[1, ci51
( i 51,2), a115b1150.25, a225b2250.15, a125b1250.2,
a215b2150.3, DCNN satisfies the conditions of Theorem
but not those of Theorem 1, i.e., conditions of Theorem 1
independent of conditions of Theorem 2, in the sense tha
any one of them there exists a network which satisfies
but not the other.

III. CONCLUSION

In this paper, we have derived two main theorems wh
did not assume the symmetry of the connection ma
(ai j )n3n ,(bi j )n3n , and only assumed the output of the ce
~i.e., the nonlinear properties of the cell! with (H1) and (H2)
above. Also, the theorens did not contain each other, and
not require differentiable or strictly monotonously increa
ing; for this reason, the sufficient conditions established
the two Theorems above have a wider adaptive range,
these conditions can be applied to design unconditional
bally stable cellular neural networks with delays~DCNN!,
which possess highly important significance in some app
fields, for instance, the global optimization problem. In a
dition, the results in this paper are easily verifiable and
each of the outputs of the cellf j ( j 51,2, . . . ,n) are quite
general, and it has very wide adjustable leeway because
sufficient criteria possess many adjustable real parame
which are of significance in the design of DCNN.

ACKNOWLEDGMENT

This work was supported in part by the Natural Scien
Foundation of Yunnan Province, China.
@1# L. O. Chua and L. Yang, IEEE Trans. Circuits Syst.CAS-35,
1257 ~1988!.

@2# L. O. Chua and L. Yang, IEEE Trans. Circuits Syst.CAS-35,
1273 ~1988!.

@3# T. Roska and L. O. Chua, Int. J. Circuit Theory Appl.20, 469
~1992!.

@4# Xiaoxin Liao, Sci. China, Ser. A24, 1037~1994! ~in Chinese!.
@5# P. P. Civalleri and M. Gilli, IEEE Trans. Circuits Sys

CAS-40, 157 ~1993!.
@6# Hongtao Lu and Zhenya He, Acta Electron. Sin.25, 1 ~1997!
~in Chinese!.

@7# Jinde Cao, J. Biomath.14, 65 ~1999! ~in Chinese!.
@8# Jinde Cao and Dongming Zhou, Neural Networks11, 1601

~1998!.
@9# Jinde Cao and Shidong Wan, J. Biomath.12, 60 ~1997! ~in

Chinese!.
@10# K. Gopalsamy,Stability and Oscillation in Delay Differential

Equations of Population Dynamics~Kluwer Academic, Dor-
drecht, 1992!.


